

ARTON 14 TO 10 TO

me in =

What's Up There?

Things to See in Space

Martin L. Shoemaker Martin@Shoemaker.Space

Music: "Saxophone Song" by Mircea Iancu

Some of My Books

If This is the Last Slide We See...

My slides are available online. http://Shoemaker.Space/WhatsUpThere.pdf

Your questions aren't.

You're more important than me, and your questions are more important than my slides.

Ask! Object! Disagree! Participate! Please!

Why Do We Look Up?

Why Do We Look Up?

- The universe is pretty!
- The universe is awesome!
- The universe is inspiring!
- The universe is scary!
- The universe is educational!
- The universe is a frontier!
- The universe is a clock!
- The universe is a calendar!

How Do We Look Up?

That Big Yellow Thing in the Sky

The Sun, a.k.a. Sol

- Nearest star.
- 93 million miles/150 million km/1 Astronmical Unit (AU).
- 1.39 million km across (109 Earths).
- 1.3 million Earths in volume.
- 5,700-5 million degrees Kelvin at surface.
- Sunspots.
- Solar flares.
- The Solar Wind.
- Coronal Mass Ejections (CMEs).

Shoemaker. Space

Earth and Our Atmosphere

Meteors.

Magnetosphere.

Auroras.

Van Allen Radiation Belts.

Shoemaker. Space

LEO: Low Earth Orbit

- 200-1,600 km
- Travel time: 8 to 9 minutes.
 - But then why does it take so long to reach the ISS??
- Light Speed: 0.005 seconds.

Geosynchronous

• 35,786 km

• Travel time: 5.25 hours

• Light Speed: 0.12 seconds

The Moon

- a.k.a. Luna.
- 384,399 km from Earth.
- Travel time: 3 days
- Light speed: 1.255 seconds
- Our only natural satellite.
- Radius: 1,737.4 km (0.2727 Earth radius).
- Orbital period: 29.53 days.

Lagrange points

- Gravitationally stable points.
 - 1, 2, 3: Semi-stable.
 - 4, 5: Fully stable.
- Dust clouds in 4 and 5.
- Asteroids may cluster in these.

Planets

- Large bodies.
 - Rocky spheres.
 - Gas Giants.
 - Ice Giants.
- Orbit the Sun.

Mercury

- 0.387 AUs from Sun.
- 0.382 times Earth radius.
- "Year": 87.97 days.
- Temp: -193 C to 427 C.

Venus

- 0.723 AUs from Sun.
- 0.950 times Earth radius.
- "Year": 224.7 days.
- Temp: 464 C.

Earth

- 1 AU from Sun.
- Radius: 6,371 km.
- Year: 365.25 days.
- Temp: -89.2 C to 56.7 C.

Mars

- 1.523 AU from Sun.
- Radius: 3,389.5 km.
- "Year": 686.98 days.
- Temp: -110 C to 35 C.
- 2 moons: Deimos and Phobos.

Mercury

- 0.387 AUs from Sun.
- 0.382 times Earth radius.
- "Year": 87.97 days.
- Temp: -193 C to 427 C.
- Venus
 - 0.723 AUs from Sun.
 - 0.950 times Earth radius.
 - "Year": 224.7 days.
 - Temp: 464 C.

Mercury

- 0.387 AUs from Sun.
- 0.382 times Earth radius.
- "Year": 87.97 days.
- Temp: -193 C to 427 C.

Venus

- 0.723 AUs from Sun.
- 0.950 times Earth radius.
- "Year": 224.7 days.
- Temp: 464 C.

Earth

- 1 AU from Sun.
- Radius: 6,371 km.
- Year: 365.25 days.
- Temp: -89.2 C to 56.7 C.

Mars

- 1.523 AU from Sun.
- Radius: 3,389.5 km.
- "Year": 686.98 days.
- Temp: -110 C to 35 C.
- 2 moons: Deimos and Phobos.

- Earth
 - 1 AU from Sun.
 - Radius: 6,371 km.
 - Year: 365.25 days.
 - Temp: -89.2 C to 56.7 C.

- 1.523 AU from Sun.
- Radius: 3,389.5 km.
- "Year": 686.98 days.
- Temp: -110 C to 35 C.
- 2 moons: Deimos and Phobos.

- Sizes range from dust to dwarf planets.
 - Smallest detectable: 10 meters.
 - Largest detectable: 940 km.
- Average separation: 965,000 km.
 - 2.5 times the distance from the Earth to the Moon.

- Ceres.
 - First known and largest asteroid.
 - Radius: 469.7 km.
 - "Year": 1,680 days.

- Vesta
 - Second-largest asteroid.
 - Radius: 262 km.
 - "Year": 1,325.86 days.

Jupiter

- Gas Giant.
- 5.2 AUs from Sun.
- 10.97 times Earth radius.
- "Year": 4,332.59 days.
- Temp: 165 K.
- 97+ moons

Saturn

- Gas Giant.
- Amazing rings.8 major.
- 9.5826 AUs from Sun.
- 9.1402 times Earth radius.
- "Year": 10,775.70 days.
- Temp: 134 K.
- 274+ moons.

Uranus

- Ice Giant.
- 19.191 AU from Sun.
- Radius: 4 times Earth radius.
- "Year": 30,688.5 days.
- Temp: 76 K.
- 28+ moons.

Neptune

- Ice Giant.
- 30.7 AU from Sun.
- Radius: 3.8 times Earth radius.
- "Year": 686.98 days.
- Temp: 72 K.
- 16+ moons.
- Axial Tilt: 28.32°.

Jupiter

- Gas Giant.
- 5.2 AUs from Sun.
- 10.97 times Earth radius
- "Year": 4,332.59 days.
- Temp: 165 K.
- 97+ moons

Saturn

- Gas Giant.
- Amazing rings.8 major.
- 9.5826 AUs from Sun.
- 9.1402 times Earth radius
- "Year": 10,775.70 days.
- Temp: 134 K.
- 274+ moons.

Jupiter

- Gas Giant.
- 5.2 AUs from Sun.
- 10.97 times Earth radius.
- "Year": 4,332.59 days.
- Temp: 165 K.
- 97+ moons

Saturn

- Gas Giant.
- Amazing rings.8 major.
- 9.5826 AUs from Sun.
- 9.1402 times Earth radius.
- "Year": 10,775.70 days.
- Temp: 134 K.
- 274+ moons.

Uranus

- Ice Giant.
- 19.191 AU from Sun.
- Radius: 4 times Earth radius.
- "Year": 30,688.5 days.

- Uranus
 - Ice Giant.
 - 19.191 AU from Sun.
 - Radius: 4 times Earth radius.
 - "Year": 30,688.5 days.
 - Temp: 76 K.
 - 28+ moons.
- Neptune
 - Ice Giant.
 - 30.7 AU from Sun.
 - Radius: 3.8 times Earth radius.
 - "Year": 686.98 days.
 - Temp: 72 K.
 - 16+ moons.
 - Axial Tilt: 28.32°.

- Uranus
 - Ice Giant.
 - 19.191 AU from Sun.
 - Radius: 4 times Earth radius.
 - "Year": 30,688.5 days.
 - Temp: 76 K.
 - 28+ moons.

Neptune

- Ice Giant.
- 30.7 AU from Sun.
- Radius: 3.8 times Earth radius.
- "Year": 686.98 days.
- Temp: 72 K.
- 16+ moons.
- Axial Tilt: 28.32°.

- Pluto
 - "Dwarf Planet".
 - 39.482 AUs from Sun.
 - 0.1868 times Earth radius.
 - "Year": 90,560 days.
 - Temp: 66 K.
 - 1 moon.
- Kuiper Belt.
 - Another asteroid belt.
 - More icy than rocky.
 - Dwarf planets.
 - Comets.
- Oort Cloud.

- Comets.
 - "Slush balls".
 - Nucleus.
 - Coma.
 - Tail.
 - Can approach the Sun in an elliptical orbit.

- Heliopause.
 - The edge of the Solar wind.
 - The start of other stellar winds.
 - 121 AUs from Sun.

Pluto

- "Dwarf Planet".
- 39.482 AUs from Sun.
- 0.1868 times Earth radius.
- "Year": 90,560 days.
- Temp: 66 K.
- 1 moon.
- Kuiper Belt.
 - Another asteroid belt.
 - More icy than rocky.
 - Dwarf planets.
 - Comets.
- Oort Cloud.

Pluto

- "Dwarf Planet".
- 39.482 AUs from Sun.
- 0.1868 times Earth radius.
- "Year": 90,560 days.
- Temp: 66 K.
- 1 moon.

Kuiper Belt.

- Another asteroid belt.
- More icy than rocky.
- Dwarf planets.
- · Comets.
- Oort Cloud.

- Comets.
 - "Slush balls".
 - Nucleus.
 - Coma.
 - Tail.
 - Can approach the Sun in an elliptical orbit.
- Heliopause.
 - The edge of the Solar wind.
 - The start of other stellar winds.
 - 121 AUs from Sun.

- Pluto
 - "Dwarf Planet".
 - 39.482 AUs from Sun.
 - 0.1868 times Earth radius.
 - "Year": 90,560 days.

- "Slush balls".
- Nucleus.
- Coma.
- Tail.

emaker.Spa

- Can approach the Sun in an elliptical orbit.
- Heliopause.
 - The edge of the Solar wind.
 - The start of other stellar winds.
 - 121 AUs from Sun.

Stars and Stellar Evolution

- Protostars. Very young stars forming from the gravitational collapse of a molecular cloud.
- Yellow Dwarfs, Medium-sized stars that steadily fuse hydrogen to helium in their cores, maintaining equilibrium for about 10 billion years.
- Red Giant. Evolved stars that have exhausted core hydrogen, expanded enormously, and now fuse hydrogen in a shell around a helium core.
- White Dwarf. Dense, Earth-sized remnants of low- to mediummass stars after shedding outer layers.
- Red Dwarf. Small, cool stars that fuse hydrogen into helium in their cores very slowly. (Eventually white dwarfs, but...)
- Blue Main-Sequence Stars, Hot, massive stars that rapidly fuse hydrogen in their cores, leading to short lifespans of only a few million years.
- Blue Supergiant. Massive stars in a post-main-sequence phase, fusing heavier elements while maintaining high surface temperatures and extreme luminosities.
- Red Supergiant. Largest stars, having expanded after leaving the main sequence.
- Supernovas. Exploding Red Supergiants when they fuse iron.
- Neutron Stars/Pulsars. Ultra-dense remnants of massive stars after a supernova explosion.
- Black Holes. Form from the core collapse of very massive stars during a supernova.

Stars and Stellar Evolution: Protostars

- Protostars. Very young stars forming from the gravitational collapse of a molecular cloud.
- Yellow Dwarfs, Medium-sized stars that steadily fuse hydrogen to helium in their cores, maintaining equilibrium for about 10 billion years.
- Red Giant. Evolved stars that have exhausted core hydrogen, expanded enormously, and now fuse hydrogen in a shell around a helium core.
- White Dwarf. Dense, Earth-sized remnants of low- to mediummass stars after shedding outer layers.
- Red Dwarf. Small, cool stars that fuse hydrogen into helium in their cores very slowly. (Eventually white dwarfs, but...)
- Blue Main-Sequence Stars, Hot, massive stars that rapidly fuse hydrogen in their cores, leading to short lifespans of only a few million years.
- Blue Supergiant. Massive stars in a post-main-sequence phase, fusing heavier elements while maintaining high surface temperatures and extreme luminosities.
- Red Supergiant. Largest stars, having expanded after leaving the main sequence.
- Supernovas. Exploding Red Supergiants when they fuse iron.
- Neutron Stars/Pulsars. Ultra-dense remnants of massive stars after a supernova explosion.
- Black Holes. Form from the core collapse of very massive stars during a supernova.

T Tauri System: The Birth of Protostars

Stars and Stellar Evolution: Yellow Dwarfs

- Protostars. Very young stars forming from the gravitational collapse of a molecular cloud.
- Yellow Dwarfs, Medium-sized stars that steadily fuse hydrogen to helium in their cores, maintaining equilibrium for about 10 billion years.
- Red Giant. Evolved stars that have exhausted core hydrogen, expanded enormously, and now fuse hydrogen in a shell around a helium core.
- White Dwarf. Dense, Earth-sized remnants of low- to mediummass stars after shedding outer layers.
- Red Dwarf. Small, cool stars that fuse hydrogen into helium in their cores very slowly. (Eventually white dwarfs, but...)
- Blue Main-Sequence Stars, Hot, massive stars that rapidly fuse hydrogen in their cores, leading to short lifespans of only a few million years.
- Blue Supergiant. Massive stars in a post-main-sequence phase, fusing heavier elements while maintaining high surface temperatures and extreme luminosities.
- Red Supergiant. Largest stars, having expanded after leaving the main sequence.
- Supernovas. Exploding Red Supergiants when they fuse iron.
- Neutron Stars/Pulsars. Ultra-dense remnants of massive stars after a supernova explosion.
- Black Holes. Form from the core collapse of very massive stars during a supernova.

Stars and Stellar Evolution: Red Giants

- Protostars. Very young stars forming from the gravitational collapse of a molecular cloud.
- Yellow Dwarfs, Medium-sized stars that steadily fuse hydrogen to helium in their cores, maintaining equilibrium for about 10 billion years.
- Red Giant. Evolved stars that have exhausted core hydrogen, expanded enormously, and now fuse hydrogen in a shell around a helium core.
- White Dwarf. Dense, Earth-sized remnants of low- to mediummass stars after shedding outer layers.
- Red Dwarf. Small, cool stars that fuse hydrogen into helium in their cores very slowly. (Eventually white dwarfs, but...)
- Blue Main-Sequence Stars, Hot, massive stars that rapidly fuse hydrogen in their cores, leading to short lifespans of only a few million years.
- Blue Supergiant. Massive stars in a post-main-sequence phase, fusing heavier elements while maintaining high surface temperatures and extreme luminosities.
- Red Supergiant. Largest stars, having expanded after leaving the main sequence.
- Supernovas. Exploding Red Supergiants when they fuse iron.
- Neutron Stars/Pulsars. Ultra-dense remnants of massive stars after a supernova explosion.
- Black Holes. Form from the core collapse of very massive stars during a supernova.

Stars and Stellar Evolution: White Dwarfs

- Protostars. Very young stars forming from the gravitational collapse of a molecular cloud.
- Yellow Dwarfs, Medium-sized stars that steadily fuse hydrogen to helium in their cores, maintaining equilibrium for about 10 billion years.
- Red Giant. Evolved stars that have exhausted core hydrogen, expanded enormously, and now fuse hydrogen in a shell around a helium core.
- White Dwarf. Dense, Earth-sized remnants of low- to medium-mass stars after shedding outer layers.
- Red Dwarf. Small, cool stars that fuse hydrogen into helium in their cores very slowly. (Eventually white dwarfs, but...)
- Blue Main-Sequence Stars, Hot, massive stars that rapidly fuse hydrogen in their cores, leading to short lifespans of only a few million years.
- Blue Supergiant. Massive stars in a post-main-sequence phase, fusing heavier elements while maintaining high surface temperatures and extreme luminosities.
- Red Supergiant. Largest stars, having expanded after leaving the main sequence.
- Supernovas. Exploding Red Supergiants when they fuse iron.
- Neutron Stars/Pulsars. Ultra-dense remnants of massive stars after a supernova explosion.
- Black Holes. Form from the core collapse of very massive stars during a supernova.

Stars and Stellar Evolution: Red Dwarfs

- Protostars. Very young stars forming from the gravitational collapse of a molecular cloud.
- Yellow Dwarfs, Medium-sized stars that steadily fuse hydrogen to helium in their cores, maintaining equilibrium for about 10 billion years.
- Red Giant. Evolved stars that have exhausted core hydrogen, expanded enormously, and now fuse hydrogen in a shell around a helium core.
- White Dwarf. Dense, Earth-sized remnants of low- to mediummass stars after shedding outer layers.
- Red Dwarf. Small, cool stars that fuse hydrogen into helium in their cores very slowly. (Eventually white dwarfs, but...)
- Blue Main-Sequence Stars, Hot, massive stars that rapidly fuse hydrogen in their cores, leading to short lifespans of only a few million years.
- Blue Supergiant. Massive stars in a post-main-sequence phase, fusing heavier elements while maintaining high surface temperatures and extreme luminosities.
- Red Supergiant. Largest stars, having expanded after leaving the main sequence.
- Supernovas. Exploding Red Supergiants when they fuse iron.
- Neutron Stars/Pulsars. Ultra-dense remnants of massive stars after a supernova explosion.
- Black Holes. Form from the core collapse of very massive stars during a supernova.

Proxima Centauri: A Red Dwarf

Stars and Stellar Evolution: Blue Main-Sequence

- Protostars. Very young stars forming from the gravitational collapse of a molecular cloud.
- Yellow Dwarfs, Medium-sized stars that steadily fuse hydrogen to helium in their cores, maintaining equilibrium for about 10 billion years.
- Red Giant. Evolved stars that have exhausted core hydrogen, expanded enormously, and now fuse hydrogen in a shell around a helium core.
- White Dwarf. Dense, Earth-sized remnants of low- to mediummass stars after shedding outer layers.
- Red Dwarf. Small, cool stars that fuse hydrogen into helium in their cores very slowly. (Eventually white dwarfs, but...)
- Blue Main-Sequence Stars, Hot, massive stars that rapidly fuse hydrogen in their cores, leading to short lifespans of only a few million years.
- Blue Supergiant. Massive stars in a post-main-sequence phase, fusing heavier elements while maintaining high surface temperatures and extreme luminosities.
- Red Supergiant. Largest stars, having expanded after leaving the main sequence.
- Supernovas. Exploding Red Supergiants when they fuse iron.
- Neutron Stars/Pulsars. Ultra-dense remnants of massive stars after a supernova explosion.
- Black Holes. Form from the core collapse of very massive stars during a supernova.

Stars and Stellar Evolution: Blue Supergiant

- Protostars. Very young stars forming from the gravitational collapse of a molecular cloud.
- Yellow Dwarfs, Medium-sized stars that steadily fuse hydrogen to helium in their cores, maintaining equilibrium for about 10 billion years.
- Red Giant. Evolved stars that have exhausted core hydrogen, expanded enormously, and now fuse hydrogen in a shell around a helium core.
- White Dwarf. Dense, Earth-sized remnants of low- to mediummass stars after shedding outer layers.
- Red Dwarf. Small, cool stars that fuse hydrogen into helium in their cores very slowly. (Eventually white dwarfs, but...)
- Blue Main-Sequence Stars, Hot, massive stars that rapidly fuse hydrogen in their cores, leading to short lifespans of only a few million years.
- Blue Supergiant. Massive stars in a post-main-sequence phase, fusing heavier elements while maintaining high surface temperatures and extreme luminosities.
- Red Supergiant. Largest stars, having expanded after leaving the main sequence.
- Supernovas. Exploding Red Supergiants when they fuse iron.
- Neutron Stars/Pulsars. Ultra-dense remnants of massive stars after a supernova explosion.
- Black Holes. Form from the core collapse of very massive stars during a supernova.

Rigel: A Blue Supergiant

Stars and Stellar Evolution: Red Supergiant

- Protostars. Very young stars forming from the gravitational collapse of a molecular cloud.
- Yellow Dwarfs, Medium-sized stars that steadily fuse hydrogen to helium in their cores, maintaining equilibrium for about 10 billion years.
- Red Giant. Evolved stars that have exhausted core hydrogen, expanded enormously, and now fuse hydrogen in a shell around a helium core.
- White Dwarf. Dense, Earth-sized remnants of low- to mediummass stars after shedding outer layers.
- Red Dwarf. Small, cool stars that fuse hydrogen into helium in their cores very slowly. (Eventually white dwarfs, but...)
- Blue Main-Sequence Stars, Hot, massive stars that rapidly fuse hydrogen in their cores, leading to short lifespans of only a few million years.
- Blue Supergiant. Massive stars in a post-main-sequence phase, fusing heavier elements while maintaining high surface temperatures and extreme luminosities.
- Red Supergiant. Largest stars, having expanded after leaving the main sequence.
- Supernovas. Exploding Red Supergiants when they fuse iron.
- Neutron Stars/Pulsars. Ultra-dense remnants of massive stars after a supernova explosion.
- Black Holes. Form from the core collapse of very massive stars during a supernova.

Betelgeuse: A Red Supergiant

Stars and Stellar Evolution: Supernova

- Protostars. Very young stars forming from the gravitational collapse of a molecular cloud.
- Yellow Dwarfs, Medium-sized stars that steadily fuse hydrogen to helium in their cores, maintaining equilibrium for about 10 billion years.
- Red Giant. Evolved stars that have exhausted core hydrogen, expanded enormously, and now fuse hydrogen in a shell around a helium core.
- White Dwarf. Dense, Earth-sized remnants of low- to mediummass stars after shedding outer layers.
- Red Dwarf. Small, cool stars that fuse hydrogen into helium in their cores very slowly. (Eventually white dwarfs, but...)
- Blue Main-Sequence Stars, Hot, massive stars that rapidly fuse hydrogen in their cores, leading to short lifespans of only a few million years.
- Blue Supergiant. Massive stars in a post-main-sequence phase, fusing heavier elements while maintaining high surface temperatures and extreme luminosities.
- Red Supergiant. Largest stars, having expanded after leaving the main sequence.
- Supernovas. Exploding Red Supergiants when they fuse iron.
- Neutron Stars/Pulsars. Ultra-dense remnants of massive stars after a supernova explosion.
- Black Holes. Form from the core collapse of very massive stars during a supernova.

SN 1994D: A supernova within galaxy NGC 4526

Stars and Stellar Evolution: Neutron Stars/Pulsars

- Protostars. Very young stars forming from the gravitational collapse of a molecular cloud.
- Yellow Dwarfs, Medium-sized stars that steadily fuse hydrogen to helium in their cores, maintaining equilibrium for about 10 billion years.
- Red Giant. Evolved stars that have exhausted core hydrogen, expanded enormously, and now fuse hydrogen in a shell around a helium core.
- White Dwarf. Dense, Earth-sized remnants of low- to mediummass stars after shedding outer layers.
- Red Dwarf. Small, cool stars that fuse hydrogen into helium in their cores very slowly. (Eventually white dwarfs, but...)
- Blue Main-Sequence Stars, Hot, massive stars that rapidly fuse hydrogen in their cores, leading to short lifespans of only a few million years.
- Blue Supergiant. Massive stars in a post-main-sequence phase, fusing heavier elements while maintaining high surface temperatures and extreme luminosities.
- Red Supergiant. Largest stars, having expanded after leaving the main sequence.
- Supernovas. Exploding Red Supergiants when they fuse iron.
- Neutron Stars/Pulsars. Ultra-dense remnants of massive stars after a supernova explosion.
- Black Holes. Form from the core collapse of very massive stars during a supernova.

Echo of a Pulsar in the Crab Nebula

Stars and Stellar Evolution: Black Holes

- Protostars. Very young stars forming from the gravitational collapse of a molecular cloud.
- Yellow Dwarfs, Medium-sized stars that steadily fuse hydrogen to helium in their cores, maintaining equilibrium for about 10 billion years.
- Red Giant. Evolved stars that have exhausted core hydrogen, expanded enormously, and now fuse hydrogen in a shell around a helium core.
- White Dwarf. Dense, Earth-sized remnants of low- to mediummass stars after shedding outer layers.
- Red Dwarf. Small, cool stars that fuse hydrogen into helium in their cores very slowly. (Eventually white dwarfs, but...)
- Blue Main-Sequence Stars, Hot, massive stars that rapidly fuse hydrogen in their cores, leading to short lifespans of only a few million years.
- Blue Supergiant. Massive stars in a post-main-sequence phase, fusing heavier elements while maintaining high surface temperatures and extreme luminosities.
- Red Supergiant. Largest stars, having expanded after leaving the main sequence.
- Supernovas. Exploding Red Supergiants when they fuse iron.
- Neutron Stars/Pulsars. Ultra-dense remnants of massive stars after a supernova explosion.
- Black Holes. Form from the core collapse of very massive stars during a supernova.

Messier 87: A supermassive black hole

Stars and Stellar Evolution

- Protostars. Very young stars forming from the gravitational collapse of a molecular cloud.
- Yellow Dwarfs, Medium-sized stars that steadily fuse hydrogen to helium in their cores, maintaining equilibrium for about 10 billion years.
- Red Giant. Evolved stars that have exhausted core hydrogen, expanded enormously, and now fuse hydrogen in a shell around a helium core.
- White Dwarf. Dense, Earth-sized remnants of low- to mediummass stars after shedding outer layers.
- Red Dwarf. Small, cool stars that fuse hydrogen into helium in their cores very slowly. (Eventually white dwarfs, but...)
- Blue Main-Sequence Stars, Hot, massive stars that rapidly fuse hydrogen in their cores, leading to short lifespans of only a few million years.
- Blue Supergiant. Massive stars in a post-main-sequence phase, fusing heavier elements while maintaining high surface temperatures and extreme luminosities.
- Red Supergiant. Largest stars, having expanded after leaving the main sequence.
- Supernovas. Exploding Red Supergiants when they fuse iron.
- Neutron Stars/Pulsars. Ultra-dense remnants of massive stars after a supernova explosion.
- Black Holes. Form from the core collapse of very massive stars during a supernova.

- Binary Stars.
- Trinary Stars.
- Star Clusters.
- Constellations.

- Binary Stars.
- Trinary Stars.
- Star Clusters.
- Constellations.

- Binary Stars.
- Trinary Stars.
- Star Clusters.
- Constellations.

- Binary Stars.
- Trinary Stars.
- Star Clusters.
- Constellations.

Exoplanets

- Planets orbiting other stars.
- Detection methods:
 - Direct imaging.
 - Transit method.
 - Radial velocity method (Doppler shift).
 - Timing variation.

- Emission Nebulae
 - Clouds of ionized gas.
 - Lit up by nearby radiation like a neon sign.

- Clouds of gas (not ionized).
- Reflect the light from nearby stars.

- Clouds of dust and gas.
- Block the light from nearby stars.

- Gas thrown off as stars settle in as Red Dwarfs.
- Supernova Remnants
 - Gas thrown off by a supernova explosion.

- Emission Nebulae
 - Clouds of ionized gas.
 - Lit up by nearby radiation like a neon sign.
- Reflection Nebulae
 - Clouds of gas (not ionized).
 - Reflect the light from nearby stars.

- Emission Nebulae
 - Clouds of ionized gas.
 - Lit up by nearby radiation like a neon sign.
- Reflection Nebulae
 - Clouds of gas (not ionized).
 - Reflect the light from nearby stars.

- Dark Nebulae
 - Clouds of dust and gas.
 - Block the light from nearby stars.
- Planetary Nebulae
 - Gas thrown off as stars settle in as Red Dwarfs.
- Supernova Remnants
 - Gas thrown off by a supernova explosion.

snoemaker. Space

- Dark Nebulae
 - Clouds of dust and gas.
 - Block the light from nearby stars.

- Planetary Nebulae
 - Gas thrown off as stars settle in as Red Dwarfs.
- Supernova Remnants
 - Gas thrown off by a supernova explosion.

- Dark Nebulae
 - Clouds of dust and gas.
 - Block the light from nearby stars.

- Gas thrown off as stars settle in as Red Dwarfs.
- Supernova Remnants
 - Gas thrown off by a supernova explosion.

- Clusters of stars.
 - As few as 60. As many as 100 trillion.
 - As small as 20 light years. As large as 6 million light years.
- Many have a supermassive black hole at the center, and a quasar.
- Three general types.
 - Spirals.
 - Ellipticals.
 - Irregular.

- Clusters of star
 - As few as 60. A
 - As small as 20
- Many have a suggestion
- Three general ty
 - Spirals.
 - Ellipticals.
 - Irregular.

- Clusters of stars.
 - As few as 60. As male
 - As small as 20 light
- Many have a superm
- Three general types.
 - Spirals.
 - Ellipticals.
 - Irregular.

- Clusters of stars.
 - As few as 60. As many as 100 trilli
 - As small as 20 light years. As large
- Many have a supermassive blac
- Three general types.
 - Spirals.
 - Ellipticals.
 - Irregular.

The Scope of Space

Some of My Books

Things to See in Space

Martin L. Shoemaker Martin@Shoemaker.Space

Music: "Saxophone Song" by Mircea Iancu

The Sun: The Nearest Star

Martin L. Shoemaker Award-winning science fiction. Mystery. Wonder. Heart. http://Shoemaker.Space

1 1 https://science.nasa.gov/sun/

Meteors

2 https://science.nasa.gov/solarsystem/meteors-meteorites/

Auroras

3 https://www.nasa.gov/science-research/heliophysics/auroras/

Magnetosphere

https://science.nasa.gov/heliophysic s/focus-areas/magnetosphereionosphere/

Van Allen Radiation Belts

https://science.nasa.gov/mission/va n-allen-probes/

Earth's Moon: One Small Step

Martin L. Shoemaker Award-winning science fiction. Mystery. Wonder. Heart. http://Shoemaker.Space

6 https://science.nasa.gov/moon/

Mercury: Closest to the Sun

/
https://science.nasa.gov/mercury/ex
ploration/

Venus: Our Nearest Neighbor

Martin L. Shoemaker Award-winning science fiction. Mystery. Wonder. Heart. http://Shoemaker.Space

8 https://science.nasa.gov/venus/

Earth: Here We Are!

Martin L. Shoemaker Award-winning science fiction. Mystery. Wonder. Heart. http://Shoemaker.Space

9 https://science.nasa.gov/earth/

Mars: The Red Planet

Martin L. Shoemaker
Award-winning science fiction.
Mystery. Wonder. Heart.

http://Shoemaker.Space

10 https://science.nasa.gov/mars/

Ceres and Vesta: The Largest Asteroids

11 https://science.nasa.gov/solarsystem/asteroids/

Jupiter: The Giant

12 https://science.nasa.gov/jupiter/

Saturn: Lord of the Rings

13 https://science.nasa.gov/saturn/

Uranus: The Ice Giant

Martin L. Shoemaker Award-winning science fiction. Mystery. Wonder. Heart. http://Shoemaker.Space

14 https://science.nasa.gov/uranus/

Neptune: The Planet of Math

Pluto: Looks Like a Planet to Me!

16 https://science.nasa.gov/dwarf-planets/pluto/

The Kuiper Belt: 100,000 Planets?

Martin L. Shoemaker Award-winning science fiction. Mystery. Wonder. Heart. http://Shoemaker.Space

17 https://science.nasa.gov/solarsystem/kuiper-belt/

Comets: Taking the Long Way

Martin L. Shoemaker Award-winning science fiction. Mystery. Wonder. Heart. http://Shoemaker.Space

18 https://science.nasa.gov/solarsystem/comets/

The Heliopause: The Edge of Space

19 https://science.nasa.gov/missions/v oyager-program/voyagersdiscoversevidence-of-the-heliopause/

Stars and the Main Sequence

Martin L. Shoemaker Award-winning science fiction. Mystery. Wonder. Heart. http://Shoemaker.Space 20 https://en.wikipedia.org/wiki/Main_s equence

Protostars: Ready to Ignite

Red Giants: Aging Stars

White Dwarfs: Cooling Stars

23 https://en.wikipedia.org/wiki/White_d warf

Red Dwarf Stars: Not Big Enough

Martin L. Shoemaker Award-winning science fiction. Mystery. Wonder. Heart. http://Shoemaker.Space

24 https://en.wikipedia.org/wiki/Red_dw arf

Blue Main Sequence Stars: Burning Bright

25 https://en.wikipedia.org/wiki/B-type_main-sequence_star

Blue Super-Giant Stars: Bigger and Brighter

Martin L. Shoemaker Award-winning science fiction. Mystery. Wonder. Heart. http://Shoemaker.Space 26 https://en.wikipedia.org/wiki/Blue_su pergiant

Red Supergiant Stars: Warning Signs

Martin L. Shoemaker Award-winning science fiction. Mystery. Wonder. Heart. http://Shoemaker.Space

27 https://en.wikipedia.org/wiki/Red_su pergiant

Supernova: There Goes the Neighborhood

Neutron Stars: What's Left Behind

Martin L. Shoemaker Award-winning science fiction. Mystery. Wonder. Heart. http://Shoemaker.Space

29 https://en.wikipedia.org/wiki/Neutron_star

Black Holes: The End of the Line

Martin L. Shoemaker Award-winning science fiction. Mystery. Wonder. Heart. http://Shoemaker.Space

30 https://science.nasa.gov/universe/bl ack-holes/

Binary Stars

Trinary Stars

Star Clusters

31 https://en.wikipedia.org/wiki/Star_clu ster

Emission Nebulae

Martin L. Shoemaker Award-winning science fiction. Mystery. Wonder. Heart. http://Shoemaker.Space

32 https://en.wikipedia.org/wiki/Emissio n_nebula

Reflection Nebulae

33 https://en.wikipedia.org/wiki/Reflecti on_nebula

Dark Nebulae

Martin L. Shoemaker Award-winning science fiction. Mystery. Wonder. Heart. http://Shoemaker.Space

34 https://en.wikipedia.org/wiki/Dark_n ebula

35 https://en.wikipedia.org/wiki/Planeta ry_nebula

Spiral Galaxies

36 https://en.wikipedia.org/wiki/Spiral_g alaxy

Elliptical Galaxies

Martin L. Shoemaker Award-winning science fiction. Mystery. Wonder. Heart. http://Shoemaker.Space

37 https://en.wikipedia.org/wiki/Elliptica l_galaxy

Irregular Galaxies

Martin L. Shoemaker Award-winning science fiction. Mystery. Wonder. Heart. http://Shoemaker.Space

38 https://en.wikipedia.org/wiki/Irregula r_galaxy